Velocidad de liberación



Toda aquella información en su integridad que hemos sido capaces de recoger en relación con Velocidad de liberación ha sido estrictamente examinada y estructurada a fin de que te sea lo más útil posible. Posiblemente no erramos si decimos que has llegado hasta esta web tratando de saber algo más acerca de Velocidad de liberación. Por lo general es común perderse en internet en toda la maraña de páginas web que abordan el tema de Velocidad de liberación y que, sin embargo, no están aportando aquello que estamos deseando conocer acerca de Velocidad de liberación. Es a causa de este motivo que deseamos que si lo que lees a continuación relativo a Velocidad de liberación te satisface, nos dejes un comentario. Del mismo modo, si aquella información sobre Velocidad de liberación que te ofrecemos no es lo que más necesitabas, también ponlo en nuestro conocimiento, de ese modo nos será posible perfeccionar día a día esta web.

Velocidad de liberación
Descripción de esta imagen, también comentada a continuación
Ilustración del razonamiento de Isaac Newton . Desde lo alto de una montaña, un cañón dispara proyectiles con una potencia cada vez mayor. Los proyectiles A y B vuelven a caer a la tierra. El proyectil C entra en órbita circular, D en órbita elíptica. El proyectil E se libera de la atracción de la tierra.
Unidades SI metro por segundo
Dimensión L · T -1
Naturaleza Tamaño escalar extenso
Símbolo habitual o
Enlace a otros tamaños

La velocidad de liberación , o velocidad de escape o escape es, en física , la velocidad mínima que debe alcanzar un proyectil para escapar definitivamente de la atracción gravitacional de una estrella ( planeta , estrella , etc.) desprovista de atmósfera y alejarse de ella indefinidamente. . Esta velocidad es tanto más importante cuanto que la masa de la estrella es importante y el objeto está cerca de su centro. En relación con la estrella, es un valor escalar (su dirección no juega ningún papel). Esta velocidad es mayor que la velocidad mínima de órbita necesaria para que el objeto pueda colocarse en órbita alrededor de la estrella.

Si la velocidad mínima de la órbita corresponde a la velocidad necesaria para mantener una órbita circular justo por encima de la atmósfera, aumentar esta velocidad hace que la trayectoria sea cada vez más elíptica y la velocidad de liberación corresponde al punto donde la trayectoria deja de ser una elipse para convertirse en una parábola. antes de convertirse en hipérbola .

Para un objeto lanzado desde la superficie de la Tierra, la velocidad de liberación que le permite escapar de la atracción de la Tierra es de 11,2  km / s (o 40,320  km / h ). En comparación, la velocidad mínima en órbita alrededor de la Tierra es de 7,9  km / s (o 28.440  km / h ). Las velocidades de liberación desde la superficie del Sol, la Luna y Marte son, respectivamente, 617,5  km / s , 2.4  km / s y 5  km / s . Una vez que un objeto ha escapado de la atracción de la Tierra, permanece, como la Tierra, sujeto a la atracción del Sol. La velocidad de liberación que le permite escapar de esta atracción es de 42,1  km / s .

Incluso si una sonda espacial se libera de la atracción de la Tierra, debe tener velocidad adicional para permitirle cambiar su órbita alrededor del Sol para alcanzar otro cuerpo celeste.

A diferencia de los proyectiles que siguen trayectorias balísticas, un objeto capaz de una aceleración permanente sería teóricamente capaz de escapar de la atracción tan pronto como pueda superar la velocidad mínima de órbita, siguiendo una trayectoria en espiral .

Caracteristicas

La velocidad de liberación (o velocidad de escape) es la velocidad mínima a comunicar a un proyectil para que escape a la atracción del campo gravitatorio de una estrella ( planeta , estrella , etc.) y llegue a un punto hasta el infinito . A esta velocidad, la trayectoria del objeto se convierte en una parábola que se aleja de la estrella hacia el infinito. Por debajo de esta velocidad, el objeto permanece vinculado al planeta: sigue una órbita elíptica alrededor de la estrella o, si su velocidad es menor que la velocidad mínima de órbita , choca contra la estrella.

En general, para un objeto colocado en un campo de gravedad de una estrella (que tiene una simetría esférica de la distribución de su masa, una aproximación generalmente válida para un planeta o una luna con un diámetro superior a unos pocos cientos de km), la velocidad de liberación toma el siguiente valor, en metros por segundo  :

con :

  • es la constante gravitacional  :  ;
  • es la masa de la estrella, en kilogramos  ;
  • es el radio de la estrella, en metros  ;
  • es la distancia del objeto a la superficie de la estrella, en metros;
  • es el parámetro gravitacional estándar asociada a la masa de la estrella: .
  • La velocidad de liberación de una estrella aumenta cuando la masa de la estrella (M) aumenta o cuando su radio (R) disminuye. Cuanto más masiva o densa sea la estrella, mayor será la velocidad de liberación.
  • El objeto que debe alcanzar la velocidad de liberación si se coloca en altitud (d> 0) requiere una velocidad de liberación menor que la de un objeto colocado en la superficie de la estrella.
  • La tasa de liberación es un escalar, no una cantidad vectorial  : solo especifica una amplitud, no una dirección . Un objeto que se mueve a la velocidad de liberación puede escapar del campo gravitacional cualquiera que sea su dirección inicial (en la medida en que la trayectoria no se encuentre con la superficie de la estrella). Tampoco depende de la masa del objeto, solo de la de la estrella.
  • Por lo general, la velocidad de liberación se calcula para un objeto colocado en la superficie de la estrella (al nivel del océano con respecto a la Tierra). También se puede calcular para un objeto colocado en órbita alrededor de la estrella como una sonda espacial orbitando el Sol.
  • La velocidad de liberación de un objeto colocado en la superficie de una estrella giratoria como la Tierra depende de la dirección en la que se lanza y la latitud del lugar de lanzamiento. De hecho, el objeto colocado en la superficie es impulsado por la rotación de la estrella y esta velocidad disminuye o aumenta la velocidad de liberación. En el ecuador de la Tierra, un objeto lanzado hacia el este en una dirección tangente al ecuador se beneficia del inicio de un aumento de velocidad de 465  m / s  : su velocidad de liberación teórica es de 10,735  km / s en lugar de 11,2  km / s . La velocidad de rotación de la superficie disminuye como el coseno de la latitud: en la latitud de Baikonur (46 °) la reducción de la velocidad de liberación es solo: 465  m / s * cos (46 °) = 323  m / s . Si la nave espacial se lanza hacia el oeste, la velocidad de lanzamiento aumenta en consecuencia.
  • La velocidad de liberación es, además, la velocidad mínima a la que un objeto situado en el infinito y animado con una velocidad inicial cero llegará a la superficie de la estrella. Un meteorito que se estrella contra una estrella desprovista de atmósfera como Mercurio golpeará la superficie al menos a la velocidad de liberación de este planeta ( 4,3  km / s ). En el caso de la Tierra, la velocidad del meteorito será más o menos reducida (dependiendo de su tamaño, forma) por la atmósfera antes de golpear el suelo.
  • En la práctica, un lanzador encargado de lanzar una sonda espacial a una velocidad de liberación también debe tener en cuenta la fricción de la atmósfera de la estrella y compensar las fuerzas ejercidas por el campo gravitacional durante su ascenso. Estos parámetros dependen de las características de la estrella y requieren, por ejemplo, para la Tierra, provista de una atmósfera espesa y densa, agregar unos 2  km / s .

Cálculo

a) Aplicación del principio de conservación de energía

El cálculo de la tasa de liberación se puede realizar utilizando el principio de conservación de energía . Un objeto colocado en el campo de gravedad de una estrella está en un marco de referencia de Galileo porque solo está sujeto a la fuerza gravitacional que es una fuerza conservadora . En este marco de referencia, la energía mecánica del cuerpo es constante en el tiempo .

La energía mecánica del cuerpo inmerso en un campo gravitacional es la suma de su energía cinética y su energía potencial con:

Energía cinética de un cuerpo de masa m que se mueve a una velocidad v en un marco de referencia galileano
Energía potencial de un cuerpo de masa m a una distancia D de la estrella aproximadamente esférica de masa M en su campo gravitacional
b) Energía mecánica de un cuerpo ubicado a una distancia infinita de la estrella

La energía mecánica de un cuerpo animado exactamente a la velocidad de liberación con respecto a una estrella se calcula en dos puntos de su trayectoria: en su posición inicial (anotada pi ) cuando se encuentra en el campo gravitacional de la estrella a una distancia R de él y en su posición final ( pf ) cuando se encuentra a una distancia infinita de la estrella y ha escapado de su atracción.

En su posición final ( pf ):

  • la velocidad del cuerpo es cero por definición de velocidad de liberación, por lo que la energía cinética es cero
  • la energía potencial en el campo gravitacional de la estrella es cero ya que el objeto se le escapó
c) Determinación de la tasa de liberación

En aplicación de la ley de conservación de la energía, la energía mecánica del objeto en sus posiciones inicial y final es idéntica:

Si la posición inicial, pi , está sobre la superficie del planeta, es decir si es igual al radio de éste, la velocidad del cuerpo correspondiente a la velocidad de liberación es por tanto la que satisface la ecuación:

Se simplifican las masas m y se obtiene así la velocidad de liberación.

d) Velocidad de lanzamiento en relación a varias estrellas

La velocidad de liberación de un objeto colocado en reposo en un campo gravitacional que comprende varias fuentes deriva de la energía potencial acumulada en este punto con respecto al infinito. La energía potencial se obtiene simplemente acumulando las energías potenciales de cada estrella. La tasa de liberación teórica es igual a la raíz cuadrada de la suma de los cuadrados de las tasas de liberación con respecto a cada estrella. Por lo tanto, la velocidad de liberación teórica de un objeto colocado en la superficie de la Tierra para que escape tanto de la atracción de la Tierra como del Sol es:

con

  • 11,2  km / s de velocidad de liberación de la Tierra de un objeto en reposo sobre la superficie de la Tierra
  •  Velocidad de liberación de 42,1 km / s relativa al Sol de un objeto en reposo ubicado al nivel de la órbita de la Tierra alrededor del Sol.
e) Caso de velocidades cercanas a la de la luz

Este cálculo solo es válido para tasas de liberación mucho más bajas que la velocidad de la luz, ya que se utiliza una aproximación de la energía cinética que es válida solo para velocidades bajas. En áreas donde se aplica generalmente (movimiento de estrellas o naves espaciales), esta aproximación es suficiente.

Caso de objetos en aceleración constante

La velocidad de un cuerpo para mantener una órbita circular a una distancia del cuerpo alrededor del cual orbita, es la velocidad a la que la fuerza de escape centrífuga es igual a la fuerza de atracción gravitacional . Esta velocidad (que se calcula resolviendo la ecuación ) es igual y disminuye con la distancia (lo cual es lógico, de lo contrario significaría que los cuerpos ubicados a distancias arbitrariamente grandes continúan atrayéndose entre sí de manera nada despreciable).

Por lo tanto, un cuerpo en una órbita circular que acelerara, aunque sea muy ligeramente de manera constante, vería su órbita aumentar en espiral hasta el momento en que alcanzara un radio orbital para el cual la velocidad de liberación es igual a su velocidad instantánea, y donde lo haría. eventualmente escapar.

Sin embargo, esto realmente no se puede utilizar en una trayectoria espacial, porque implicaría trayectorias extremadamente largas.

Ejemplos de tasas de liberación

La Tierra vista desde el Apolo 17 . Para escapar de su atracción desde su superficie, se requiere una velocidad de liberación de 11,2  km / s (aproximadamente 40,320  km / h ). Por otro lado, es necesaria una velocidad de 42,1  km / s para escapar de la atracción del Sol (y salir del sistema solar) desde la misma posición.

La velocidad de liberación de un cuerpo que abandona la superficie de la Tierra , también conocida como la segunda velocidad cósmica , es del orden de 11,2  km / s (es decir, aproximadamente 40.000  km / h ) con respecto a un sistema de referencia inercial geocéntrico. En comparación, Júpiter es de 59,5  km / s . Un objeto que ha escapado de la atracción gravitacional de la Tierra se coloca en el campo gravitacional del Sol: si su velocidad es igual a la velocidad de liberación de la Tierra, circulará en una órbita heliocéntrica (alrededor del Sol) casi idéntica a el de la Tierra. Para que este objeto pueda salir del Sistema Solar, es decir escapar de la atracción del Sol, debe alcanzar la tercera velocidad cósmica , que es del orden de 42,1  km / s relativa a una inercia heliocéntrica de referencia. (es decir, si el objeto permanece fijo con respecto al Sol que corresponde a una situación puramente teórica) y 16.6  km / s con respecto a un marco de referencia geocéntrico (vinculado a la Tierra) c 'es decir, si el objeto viaja en un órbita heliocéntrica idéntica a la de la Tierra. El propio sistema solar orbita el centro de nuestra galaxia, la Vía Láctea . Por lo tanto, un objeto que escape a la atracción del Sol estará en órbita alrededor de la Vía Láctea.

La siguiente tabla enumera algunos ejemplos de velocidades de liberación necesarias para escapar de la atracción de ciertos objetos.

Ejemplos de tasas de liberación
Objeto colocado en
la superficie de 1
Para escapar de
la atracción de
Velocidad de liberación
(V e ) (km / s)
Objeto ubicado en
la órbita de
Para escapar de
la atracción de
Velocidad de liberación
si el objeto estático 2
Velocidad de liberación
si el objeto viaja en una
órbita heliocéntrica
sol sol +0617,5
Mercurio Mercurio +0004.3 Mercurio sol +0067,7
Venus Venus +0010,3 Venus sol +0049,5
tierra tierra +0011,2 tierra sol +0042,1 16.6
Luna Luna +0002.4 Luna tierra +0001.4
marzo marzo +0005, marzo sol +0034,1
Júpiter Júpiter +0059,5 Júpiter sol +0018,5
Ganimedes Ganimedes +0.0003,
Saturno Saturno +0035,6 Saturno sol +0013,6
Urano Urano +0021,2 Urano sol +0009,6
Neptuno Neptuno +0023,6 Neptuno sol +0007.7
Plutón Plutón +0.0001,
Sistema solar Vía Láctea ~+1000,
1 Para planetas gaseosos, la superficie está definida por ciertas convenciones (para Júpiter presión atmosférica = 1 bar )
2 Situación teórica: un objeto sin velocidad se precipitaría hacia el Sol

Aplicaciones

Luna 1 , lanzado en 1959, es el primer artefacto en alcanzar la Velocidad de Liberación de la Tierra.

Debido a la presencia de la atmósfera terrestre, es difícil (y de poca utilidad) acercar un objeto a la superficie terrestre a una velocidad de liberación de 11,2  km / s . Esta velocidad, que cae bajo el régimen hipersónico , es demasiado alta para poder alcanzarla en la atmósfera terrestre con un sistema de propulsión; además, un objeto que alcanza esta velocidad a baja altitud sería destruido por las fuerzas de fricción. En la práctica, un objeto que debe ser lanzado desde la Tierra a una velocidad de liberación ( sonda espacial ) acelera gradualmente a través de las densas capas de la atmósfera antes de alcanzar la órbita terrestre baja (160 a 2000  km de altitud) y luego se acelera desde esta altitud, a superan los 11,2  km / s en relación al centro de la Tierra.

Históricamente, la soviética espacio la sonda Luna 1 , diseñado para volar sobre la luna y lanzado en 1959 , fue el primer objeto de lograr la Tierra velocidad de liberación. Ciertas sondas espaciales soviéticas del programa Luna y los módulos lunares del programa Apolo despegaron del suelo lunar y escaparon a su atracción.

La nave espacial del programa Apolo no necesitaba alcanzar la velocidad de liberación de la Tierra, ya que la Luna se encuentra en el campo de atracción de la Tierra.

Finalmente, varias sondas espaciales de la NASA ( Pioneer 11 , Programa Voyager , New Horizons ) tienen la velocidad suficiente para escapar de la atracción del Sol en unas pocas decenas de miles de años. Ningún lanzador existente es lo suficientemente poderoso como para lanzar una sonda espacial que pese unos pocos cientos de kg a una velocidad de liberación que le permita escapar de la atracción del sol. Estas misiones tuvieron que recurrir a la asistencia gravitacional de los planetas para alcanzar la velocidad necesaria.

Velocidad de liberación y agujero negro

Al igual que con cualquier cuerpo celeste, la velocidad de liberación cerca de un agujero negro varía según la distancia desde su centro (independientemente de la métrica utilizada). Las diferentes métricas que permiten una descripción del paso del rayo de Schwarzschild muestran que la velocidad de liberación más allá del rayo de Schwarzschild es estrictamente menor que la velocidad de la luz  ; sobre este rayo podemos decir que es igual a la velocidad de la luz, aunque esto solo nos permitiría convertirnos en satélite sin poder alejarnos; y por debajo del radio, es estrictamente mayor que la velocidad de la luz y cualquier cuerpo cae irremediablemente hacia el centro del agujero negro .

Notas y referencias

  1. Entrada "velocidad de liberación" , en Richard Taillet , Loïc Villain y Pascal Febvre , Diccionario de Física , Bruselas, Universidad De Boeck ,, XI-672  pág. ( ISBN  978-2-8041-5688-6 , aviso BnF n o  FRBNF41256105 ) , p.  524, en línea en Google Books (consultado el 21 de julio de 2014)
  2. Entrada velocidad de escape  " en FranceTerme , la base de datos terminológica de la Delegación general en la lengua francesa y las lenguas de Francia 's Ministerio de Cultura (Francia) (consultado el 21 de julio de, 2014)
  3. Michel Capderou (prefacio de Gérard Mégie ), Satélites: órbitas y misiones , París, Springer ,, 486-XVI  pág. ( ISBN  2-287-59772-7 , aviso BnF n o  FRBNF38943828 , leer en línea ) , p.  23, en línea en Google Books (consultado el 21 de julio de 2014)
  4. Datos del sistema solar  " , Universidad Estatal de Georgia
  5. (en) 1959-012A  " NASA - Centro Nacional de Datos de Ciencia Espacial

Ver también

Artículos relacionados

enlaces externos

Por el momento, hasta aquí la totalidad de la información que logramos compilar sobre Velocidad de liberación, esperamos que sirva al propósito por el cual lo estabas buscando. Si la respuesta es afirmativa, por favor, no descartes sugerirnos entre tus amigos y amigas y personas de la familia, y ten en cuenta que puedes acceder a la Gran Enciclopedia en todo momento y ocasión. Si pese a nuestro esfuerzo, te parece que lo que proporcionamos sobre Velocidad de liberación tiene algún fallo o es preciso completar la información o corregir, nos resultaría una valiosísima aportación que nos lo hagas saber. Brindar la mejor y mayor información acerca de Velocidad de liberación y relativo a cualquier otra cuestión es en lo que consiste la razón de ser de esta página; nos incentiva el mismo espíritu que a la sazón inspiró a las mentes responsables de la formulación de la Enciclopedia, y ese es el motivo por el cual es nuestro deseo que aquello que has descubierto en esta web sobre Velocidad de liberación te haya resultado útil para incrementar tus habilidades.

Opiniones de nuestros usuarios

Juan Manuel Montes Rivera

Es un buen artículo referente a Velocidad de liberación. Da la información necesaria, sin excesos.

Ismael Andres Flores

Mi papá me retó a hacer la tarea sin utilizar nada de Wikipedia, yo le dije que podía hacerla buscando en muchos otros sitios. Por suerte para mi encontré esta web y este artículo sobre Velocidad de liberación me ayudó a completar mi tarea. Casi caigo en la tentación de entrar a Wikipedia, pues no encontraba nada sobre Velocidad de liberación, pero por suerte encontré aquí, porque luego mi papá revisó el historial de navegación para ver donde habia estado. Se imaginan si llego a entrar en Wikipedia? Suerte que encontré esta web y el artículo sobre Velocidad de liberación aquí. Por eso les dejo mis five stars.

Jose Javier Guerrero Hernandez

Esta entrada sobre Velocidad de liberación me ha hecho ganar una apuesta, que menos que dejarle una buena puntuación.

Julian Moreno Trujillo

¡Por fin! Hoy en día parece que si no te escriben artículos de diez mil palabras no están contentos. Señores redactores de contenidos, este SÍ es un buen artículo sobre Velocidad de liberación.